Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2022: 2748962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909472

RESUMEN

In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.


Asunto(s)
Bothrops , Venenos de Crotálidos , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Animales , Antivenenos/uso terapéutico , Bothrops/metabolismo , Metaloproteasas/metabolismo , Simulación del Acoplamiento Molecular , Pruebas de Neutralización , Anticuerpos de Dominio Único/farmacología , Mordeduras de Serpientes/tratamiento farmacológico
2.
Toxins (Basel) ; 10(4)2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596324

RESUMEN

Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Crotoxina/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Crotoxina/toxicidad , Escherichia coli/genética , Masculino , Ratones , Simulación del Acoplamiento Molecular , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/uso terapéutico , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/terapia
3.
PLoS One ; 11(3): e0151363, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27028872

RESUMEN

Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.


Asunto(s)
Antivenenos , Bothrops , Venenos de Crotálidos , Fosfolipasas A2 Grupo II , Simulación del Acoplamiento Molecular , Anticuerpos de Cadena Única , Animales , Antivenenos/química , Antivenenos/genética , Antivenenos/inmunología , Camélidos del Nuevo Mundo/genética , Camélidos del Nuevo Mundo/inmunología , Venenos de Crotálidos/química , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/toxicidad , Fosfolipasas A2 Grupo II/química , Fosfolipasas A2 Grupo II/inmunología , Fosfolipasas A2 Grupo II/toxicidad , Masculino , Ratones , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
4.
PLoS One ; 9(9): e108067, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243411

RESUMEN

In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections.


Asunto(s)
Camelus/inmunología , Síndrome Pulmonar por Hantavirus/diagnóstico , Fragmentos de Inmunoglobulinas/inmunología , Nucleoproteínas/inmunología , Orthohantavirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/biosíntesis , Diagnóstico Precoz , Síndrome Pulmonar por Hantavirus/inmunología , Humanos , Fragmentos de Inmunoglobulinas/química , Masculino , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...